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Abstract. The Knuth-Morris-Pratt (KMP) pattern-matching algorithm guarantees both inde-
pendence from alphabet size and worst-case execution time linear in the pattern length; on the other
hand, the Boyer-Moore (BM) algorithm provides near-optimal average-case and best-case behaviour,
as well as executing very fast in practice. We describe a simple algorithm that employs the main ideas
of KMP and BM (with a little help from Sunday) in an effort to combine these desirable features.
Experiments indicate that in practice the new algorithm is among the fastest exact pattern-matching
algorithms discovered to date, apparently dominant for alphabet size above 15-20.
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1. Introduction. Since 1977, with the publication of both the Boyer-Moore
[2] and Knuth-Morris-Pratt [24] pattern-matching algorithms, there have certainly
been hundreds, if not thousands, of papers published that deal with exact pattern-
matching, and in particular discuss and/or introduce variants of either BM or KMP.
The pattern-matching literature has had two main foci:

1. reducing the number of letter comparisons required in the worst/average case
(for example, [13, 8, 6, 14, 15, 4, 5], see also [29, pp. 219-225]);

2. reducing the time requirement in the worst/average case (for example, [20,
30, 21, 7, 9]).
This contribution resides in the second of these categories: in an effort to reduce
processing time, we propose a mixture of Sunday’s variant [30] of BM [2] with KMP
[27, 24]. Our goal is to combine the best/average case advantages of Sunday’s algo-
rithm (BMS) with the worst case guarantees of KMP. According to the experiments
we have conducted, our new algorithm (FJS) is among the fastest in practice for the
computation of all occurrences of a pattern p = p[l..m] in a text string @ = x[1..n]
on an alphabet ¥ of size k. Moreover, based on ©(m+k)-time preprocessing, it guar-
antees that matching requires at most 3n—2m letter comparisons and O(n) matching
time.

Several comparative surveys of pattern-matching algorithms have been published
over the years [21, 25, 26, 10, 29] and a useful website [3] is maintained that gives
executable C code for the main algorithms (including preprocessing) and describes
their important features.

In this paper we first introduce, in §2, the new algorithm, establish its asymptotic
time and space requirements in the worst case, and demonstrate its correctness. Next,
extensions to the algorithm for large alphabets and patterns with don’t-care letters
are discussed in §3. Then in §4 we describe experiments that compare Algorithm
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FJS with algorithms that, from the available literature, appear to provide the best
competition in practice; specifically,

e Horspool’s algorithm (BMH) [20];

e Sunday’s algorithm (BMS) [30];

e Reverse Colussi (RC) [7];

e Turbo-BM (TBM) [9].
Finally, in §5, we draw conclusions from our experiments.

2. The New Algorithm. Algorithm FJS searches for matches to p = p[l1..m)]
in @ = x[l..n] by shifting p from left to right along . At the start of each step,
position j = 1 of p is aligned with a position i € 1..n—m+1 in x, so that position m
of p is therefore aligned with position i’ = ¢+m—j in .

In KMP matching, p is matched left-to-right with @[i], [i+1], and so on until
either a match with all of p is found or else a mismatch is located at some position
j € 1..m. In the case of a mismatch at j > 1, we say that a partial match has been
determined with p[1..j—1]. As matching proceeds, both ¢ and j are incremented, thus
maintaining the relationship ¢/ = i+m—j, the basic invariant of Algorithm FJS.

The strategy of FJS is as follows:

1. Whenever no partial match of p with x[i..i4+m—1] has been found, Sunday
shifts (described below) are performed to determine the next position i at which
x[i'] = p[m]. When such an ' has been found, KMP matching is then performed on
p[l.m—1] and x[i' —m+1..4'—1].

2. If a partial match of p with  has been found, KMP matching is continued
on p[l.m].

The pseudocode shown below illustrates this overall strategy.

ALGORITHM 1 (Hybrid Matching).
Find all occurrences of p = p[l..m] in © = x[1..n]

if m < 1 then return
je—1;i—1; ¢ «—m; m «—m—1
while ¢/ <n do

if 7 <1 then

— If no partial match with p, perform Sunday shifts,
— returning next position i’ such that x[i']| = p[m]
SUNDAY-SHIFT(3')

— Reset invariant for KMP matching of p[1..m—1]
je—1;i—¢—m
KMP-MATCH(m/; j,1)

else

— Continue KMP matching of p[l1..m]
KMP-MATCH(mn; 7, 1)

— Restore invariant for next try (SUNDAY or KMP)
j Bl i —itm—j
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As discussed in [22], the real rationale for the algorithm resides in the avoidance
of Markov effects combined with efficient shifting. A match of p[m| with x[i'] can in
most circumstances reasonably be regarded as independent of a match (or mismatch)
with p[1], where KMP matching begins. That is, we suppose that when p[l] = [i]
but p[l..m] # x[i..i'], it is more likely that p[m] # x[i'] than p[2] # x[i + 1] because
p[1] is better able to predict @[i + 1] than x[i']. When this supposition holds, we
can detect partial matches more quickly by testing positions at opposite ends of the
pattern than by testing positions in sequence. In addition, testing first at position m
of p provides a very efficient mechanism for sliding p across @ using the Sunday shift
when p[m] # x[i’], which is expected to be the most common case.

Thus, in a sense, once a suitable i’ has been found, the first half of FJS (executed
when j < 1) just performs KMP matching in a different order: position m of p
is compared first, followed by 1,2,...,m—1. Indeed, since the KMP shift is also
employed, the number of worst-case letter comparisons required for FJS is bounded
above, as we show below, by 3n—2m, compared with KMP’s 2n—m.

Preprocessing. The algorithm uses two arrays: Sunday’s array A = A[l..k],
computable in ©(m + k) time, and the KMP array 5/ = §'[1..m+1], computable in
O(m) time.
The Ath position in the A array is accessed directly by the letter h of the alphabet,
and so we need to make the assumption required by all BM-type algorithms, that the
alphabet is indexed [29] — essentially, that ¥ = {1,2,--- , k} for some integer k fixed
in advance. Then for every h € 1..k, A[h] = m—j'+1, where j’ is the position of
rightmost occurrence of the letter h in p, if it exists; zero otherwise. Thus in case of a
mismatch with «[i’], A[x[i’+1]] computes a shift that places the rightmost occurrence
j' of letter x[i’ + 1] in p opposite position ¢'+1 of &, whenever j' exists in p, and
otherwise shifts p right past position i’+1. The computation of A is straightforward
(see the Appendix for C code and [10, 29] for further discussion).
To describe the 3’ array, we introduce the border of a string u: a proper prefix
of u that is also a suffix of u. The empty string is a border of every nonempty u.
Next define an array J[1..m+1] in which §[1] = 0 and for every j € 2..m+1, B[j] is
one plus the length of the longest border of p[1..j—1]. Then §'[j] is defined as follows:
If j = m+1, §'[j] = B[j]. Otherwise, for j € 1.m, G'[j] = j
where j'—1 is the length of the longest border of p[1..j—1] such that
plj’] # plj]; if no such border exists, 7'[j] = 0.

See the Appendix for C code and [10, 29] for further discussion.

The Algorithm. The KMP parts of the algorithm need to compare position ¢ of
x with position j of p, where j may be the extension of a partial match with p[1..j—1]
or the result of an assignment j < /3’[j]. We show below the pseudocode for the KMP
version that does matching of p[l..m—1]:

KMP-MATCH(m'; j,1)
while j < m and «[i] = p[j] do
t—i1+1l; j—j+1
if j = m then
1—1+1; j — 5+ 1; output :—m
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The full p[m] version is as follows:
KMP-MATCH(m; j, i)

while j <m and «[i] = p[j] do
t—1i+1l; j—j+1
if j > m then output i—m

Observe that after each execution of a KMP version, the last line of Hybrid
Matching is executed, performing a KMP shift (; <« #'[j]) and reestablishing the
invariant i’ = ¢+m—j required subsequently by SUNDAY-SHIFT:

SUNDAY-SHIFT(7')

while z[i'] # p|m] do
i — i+ Ax[i’ +1]]
if 7/ > n then return

Correctness. The correctness of Algorithm FJS is a consequence of the correct-
ness of BMS and KMP. Note that a sentinel letter needs to be added at position n+1
of @ to ensure that A[x[i’+1]] is well defined for i/ = n. There are no restrictions on
the choice of sentinel except that it should be in X: it may occur anywhere in x and
p. If using a sentinel is undesirable, the algorithm can be modified without sacrificing
efficiency by testing the final alignment at [n —m + 1..n] as a special case outside of
the main loop.

Letter Comparisons. If, in Algorithm FJS, it is always true that j > 1, then
the maximum number of letter comparisons is 2n—m, identical to that of Algorithm
KMP (see, for example, [29]). Suppose then that it is always true that j < 1. This
means that in the worst case there may be as many as n—m+1 executions of the
match in SUNDAY-SHIFT. Then KMP-type letter comparisons could take place on the
remaining m — 1 positions of the pattern over a text string of length n—1 (under
this hypothesis, the final letter of & would never be subject to KMP-type matching).
Since Algorithm KMP performs at most 2n’ —m’ letter comparisons to find matches
for a pattern of length m’ in a string of length n’, we find, substituting n’ = n—1,
m’ = m—1, that the largest possible number of letter comparisons by Algorithm FJS
is

2(n—1)— (m—1) 4+ (n—m+1) = 3n—2m.

It is straightforward to verify that this bound is in fact attained by p = aba, € = a”.
Thus

THEOREM 1. Algorithm FJS requires at most 3n—2m letter comparisons in the
worst case, a bound attained by p = aba, x = a™. O

It appears that the matching problem p = aba, x = a™ is essentially the only one
that yields worst case behaviour. Thus there is not a large price to be paid for the
improved average-case efficiency of FJS. We remark that a preliminary version of this
algorithm published in conference proceedings [12], though faster in practice than the
one described here, did not in fact achieve the 3n—2m bound given here.
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3. Extensions.

“Don’t-Care” Approximate Patterns. There has recently been revived in-
terest in using extensions of exact pattern-matching algorithms to handle “don’t-care”
letters * or letters A = [a, e, 7, 0, u] that match any one of a specified subset {a, e, 7,0, u}
of “regular” letters [17, 18, 19].

[17] distinguishes, apparently for the first time, two forms of matching between
strings that contain indeterminate letters — that is, letters (such as % or A) that
match specified subsets of letters of a given alphabet ¥. One form of matching of
indeterminate letters, called quantum, permits an indeterminate letter to match
distinct letters in the same match — for example, ax is allowed to match xb even
though this requires that * match both a and b. On the other hand, determinate
matching requires that an indeterminate letter should always match consistent subsets
of letters in the same match: [a, b]b cannot match ala, b] because it requires that [a, b]
match both a and b.

In [18] it is shown that, for both the quantum and indeterminate cases, variants
of the BMS algorithm generally outperform the agrep-style algorithms [11, 1, 31, 28];
in [19] it is shown that these benefits extend, rather more clearly, to corresponding
variants of FJS. These results on BMS/FJS extensions thus to some degree confirm
the results of this paper.

Preprocessing Large Alphabets. The alphabet-based preprocessing arrays of
BM-type algorithms are their most useful feature, but they can be a source of trouble
as well. We have already discussed one such caveat: that the alphabet must be
indexed, but that is not the only pitfall. When the size of the alphabet is a significant
fraction of the size of the text, preprocessing time can easily overwhelm any skip
benefits gained while searching.

In the past, this has rarely been a problem. The typical application is searching
natural language text, and the alphabets used to represent that text were usually of 8
bits or less. This is small enough that the preprocessing time is unlikely to be noticed
regardless of text length. However, circumstances are changing: larger alphabets are
increasingly common when dealing with natural language strings. Coding schemes
such as Unicode make use of “wide characters” that may be up to 32 bits wide, with
16 bits being more common. But even a 16-bit alphabet is large enough to make it
counterproductive to use FJS in many applications. Typed consecutively, the letters
of a 16-bit alphabet would cover about 20 sheets of paper. To see any gain, the text
being searched would need to be longer still. Using FJS with a 32-bit alphabet is not
practical—nor even possible on the majority of present-day computers.

On the other hand Algorithm FJS—or nearly any BM-derived algorithm— can
easily be extended to allow effective use of indexed alphabets of any practical size.
The best- and worst-case number of letter comparisons remains unchanged by this
extension. The key to this is the observation that the values stored in A are effectively
upper bounds on the number of positions that can be safely skipped. If fewer positions
are skipped, then no harm is done other than to force the algorithm to do a bit more
work than needed—but even if the skip amount is fixed at 1 and the inequality
p[m] # x[i’] always holds, the limit of n—m+1 executions of the BM-type match is
unchanged.

The extension works by using a smaller preprocessing array as a kind of hash
table. First, choose a new size t < k for the modified array A’[1..t], and define a
hash function f : 3 — [1..t] with constant time and space complexity. Then for every
g € 1.t and every h € 1..k, the value stored in A’[g] is the smallest r such that
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f(h) =g and A[h] = r. The A’ array can be computed in ©(t +m) time and space
with simple modifications to the standard algorithm for A. Finally, the completed
extension replaces the lookup A[h] in Algorithm FJS with A’[f(R)].

As a practical example of this technique, we suppose that X is a wide character
encoding with k = 216 or k = 232, We let t = 28, and define f as the masking function
that keeps the lowest 8 bits of its input. Although the upper and lower bounds on
time and space complexity are unchanged, the effect on average-case behaviour is
harder to predict and will be highly sensitive to the patterns processed and the way
the alphabet is indexed. For example, the subset of Unicode corresponding to the
ASCII character set occurs in a single 256 character block. Searching a 16-bit Unicode
string that consisted only of ASCII characters using the example just described would
require exactly the same number of letter comparisons as unmodified FJS since no
hash collisions would occur in A'.

4. Experimental Results. We conducted a number of experiments to compare
Algorithm FJS with other exact pattern matching algorithms known to be among the
fastest in practice. As mentioned in §1, we selected the four algorithms BMH, BMS,
RC, and TBM for this purpose.

Colussi presents two versions of the RC algorithm in [7]; we use the first version,
which matches in O(mn) time in certain pathological cases. The alternative version
matches in ©(n) time but requires additional computation after each match, and so
is typically slower in practice. Tests with the alternative version did not produce
significantly different results relative to FJS.

We note that, of the four algorithms tested against FJS, only TBM shares with
FJS the property of having an order n upper bound in the worst case; in fact, TBM
requires at most 2n letter comparisons as opposed to 3n—2n for FJS, but in our tests
it consistently runs slower than FJS.

Implementations of the four competing algorithms were adapted from [3], which
provides well-tested C code for a large number of exact pattern matching algorithms.
This gave a standard which we mimicked closely in implementing FJS, yielding code
of consistent quality and thereby helping to ensure fairness in testing.

Our implementations vary from [3] in three significant ways. First, pattern pre-
processing was moved inline to remove the function call overhead from our execution
times. Second, the arrays used for preprocessing, which were allocated on the stack,
were replaced with statically allocated arrays. This was done to prevent the stack
from being dynamically extended by the operating system and distorting our results.
Finally, calls to the C library functions memcmp() and memset(), which were made
by some implementations, were replaced with equivalent simple loops. The library
calls are optimized for large arrays, while most of our patterns are relatively short.
Changing the call made the relevant competitors four to five times faster in our tests.

These C functions are optimized for operation on large memory regions. Our
tests feature relatively small pattern lengths, so these functions perform poorly in our
tests. Eliminating them increased execution speed by four to five times, maintaining
our consistent quality imperative.

To time the algorithms, we made use of high-frequency hardware clocks that are
available on the majority of modern computer systems. A run of each implementation
for a given text and pattern was repeated 20 times, and the fastest time was taken as
the result. The fastest time is closest to the minimum time that the run would have
taken independent of interrupts, cache misses, or other external effects. All timings
include preprocessing as well as the string search algorithm itself.
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The results presented here were taken from the system that, of those available,
provided the most precise and accurate timing hardware — namely an AMD Athlon
2500+ PC with 512MB RAM, running Windows 2000 (SP4), and using software com-
piled with version 12.00.8168 of Microsoft’s C/C++ compiler. However, the resulting
trends were highly stable across seven environments using a variety of hardware, op-
erating system, and compiler vendor combinations:

CPU (O8] Compiler
AMD Athlon 2500+ Windows 2000 (SP4) MS C/C++ 12.00
AMD Athlon 1000 MHz Windows 98 MS C/C++ 12.00
AMD Athlon 1000 MHz Windows 98 DJGPP 2.03
AMD Athlon 1000 MHz Red Hat Linux 7.1 GNU C++ 2.96
Hitachi SuperH SH-3 133 MHz | Windows CE H/PC 2.11 | MS Embedded C++ 3.0
Motorola MC68EC030 25 MHz AmigaOS 3.1 SAS C 6.0
Motorola MC68EC030 25 MHz AmigaOSs 3.1 GNU C++ 2.96

Test Data. The primary source of text strings for these experiments was Project
Gutenberg [16], an online source of copyright-expired or otherwise freely distributable
texts. A set of 2434 texts was obtained, consisting of texts published by Project
Gutenberg on or before August 16, 2001. Of these, some texts were present multiple
times owing to corrected editions being published at a later date. In these cases, all
but the latest editions were removed from the set. Of the remaining texts, 1000 were
selected at random to make up the final corpus. The corpus contained a total of
446 504 073 letters, with individual texts ranging from 10 115 to 4 823 268 letters in
length. The distribution of lengths is left-skewed as there are many more short files
than long ones, a similar distribution to many practical applications.

A second corpus was constructed from a version of the Human Genome Project’s
map of the first human chromosome. Filtering the original file to remove non-
DNA data left a string of 210 992 564 letters drawn from the nucleotide alphabet
{A,T,C,G}. This was transformed into a bit string by mapping each A, T, C, or G
to 00, 01, 10, or 11, respectively. Random substrings of the resulting binary string
were then used to construct strings drawn from alphabets of size varying by powers
of 2 from 2 to 64.

Frequency of Occurrence. We constructed high- and moderate-frequency pat-
tern sets to observe the effect of match frequency on performance. To obtain compa-
rable results, we fixed the number and length of the patterns in both sets. As both
values must be kept fairly small to construct a meaningful high-frequency pattern set,
we settled on sets of seven patterns of length six.

The high-frequency pattern set consisted of the following (where . represents the
space symbol):

~of_th of_the f.the. _that. ,_and. _this. n_the.

These were selected by finding the seven most frequent substrings of length six in a
random sample of 200 texts from our primary corpus. These patterns occur 3 366 899
times in the full corpus. Figure 4.1 graphs the performance of the tested algorithms for
the high-frequency set. The execution time for each text is the total time taken for all
patterns, where the time for each pattern is determined as described above. Strictly
speaking, as the selection of patterns was not randomized, it is not statistically valid
to infer that these results apply to all possible frequent patterns. However, considering
all our results together, we are confident that the results given here are typical.

For the moderate frequency set, we randomly selected 7 words of at least length
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6 from those words sharing an expected frequency of 4 instances per 10 000 words.
Actual match frequency may vary since patterns may occur often within other words,
but this tends to occur in practice as well. After truncating long words at six letters
the final set was:
better enough govern public someth system though

These patterns occur 266 792 times in our corpus, or about one thirteenth as often
as the patterns in the high-frequency set. Figure 4.2 graphs the results of this test;
as in the high-frequency test, the execution time is the total time for all patterns on
a given text.

Pattern Length. Pattern sets were constructed consisting of nine patterns for
each possible length from three to nine. These were selected using the methods similar
to the moderate frequency experiment above, but with an expected frequency of 2—-
3 times per 10 000 words. The reduced frequency was needed to allow sufficient
candidates of each length. As above, the actual frequency of some patterns, shorter
patterns in particular, will be higher due to their occurring more frequently within
other words. The sets, and their respective match frequencies, follow.

Length Matches Pattern Set

3 586 198 air, age, ago, boy, car, I'm, job, run, sic

4 346 355 body, half, held, past, seem, seen, tell, week, word

5 250 237 death, field, money, quite, seems, shall, taken, whose,
words

6 182 353 became, behind, cannot, having, making, moment, period,
really, result

7 99 109 already, brought, college, control, federal, further, provide,
society, special

8 122 854 anything, evidence, military, position, probably, problems,
question, students, together

9 71 371 available, community, education, following, necessary,

political, situation, sometimes, therefore

Figure 4.3 graphs the results from this test. The time for each pattern length is
the total time for searching for all nine patterns in the relevant set in each of the texts
of the primary corpus.

The trends of FJS and BMS suggested that they are asymptotically the same.
To investigate further, we tested 90 patterns with lengths from 25 to 175, randomly
selected from our corpus. We found that FJS and BMS became indistinguishable from
about m = 100 onward. RC’s performance was burdened by its O(m?) preprocessing
time in this test. RC was second last at m = 25, and last from m = 30 on. At
m = 175, it was already more than an order of magnitude slower than its nearest
competitor.

Alphabet Size. The secondary corpus of DNA-derived texts was used to test
the effect of alphabet size on the algorithms. This corpus consists of six texts of
500 000 letters each, each text drawn from an alphabet of a different size from 2, 4,
8, 16, 32, and 64. Each text was searched with 20 patterns of length six, each pattern
selected at random from the source text. The results, seen in Figure 4.4, suggest
that Algorithm FJS may be a poor choice for k& < 15 — thus not optimal for DNA
sequences (|X| = 4), but suitable for proteins composed of amino acids (|| = 20).
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Pathological Cases. It is well known that periodic strings can induce theoretical
worst-case behaviour in pattern-matching algorithms. For FJS, @ = a™,p = aba
maximizes the comparison count for a given text size. We compared performance
on this text and pattern for values of n from 10 000 to 100 000 at 10 000 letter
intervals. The rank order, from fastest to slowest, was consistently RC, BMH, BMS,
FJS, TBM, with RC timing 41% faster than FJS on average. These results are graphed
in Figure 4.5.

On the other hand, patterns of the form & = a™,p = ¢™ (and in particular,
m = [n/2]) maximize comparisons for many non-linear BM variants, including BMH
and BMS. Fixing the text as = a'%° % we timed the five algorithms for p = a®
through p = a”. The results, shown in Figure 4.6, showcase the O(n) matching time
guarantees of FJS and TBM and indicate a clear preference for FJS.

The worst case for the original BM algorithm can be triggered with strings of the
form x = (a*b)",p = a*~'ba*~!. As in the previous case, both the pattern and the
text are highly repetitive. We performed two final tests using string pairs of this kind.
In the first test, shown in Figure 4.7, we held r constant at 100 000 and varied k from
2 through 20. In the second test, shown in Figure 4.8, we held k£ at 10 and varied r
from 100 000 through 500 000. Both cases showed a 15-20% advantage for FJS over
BMS and RC, which were indistinguishable, and by a large margin over all others.

5. Discussion and Conclusion. We have tested FJS against four high-profile
competitors (BMH, BMS, RC, TBM) over a range of contexts: pattern frequency
(C1), pattern length (C2), alphabet size (C3), and pathological cases (C4).

Over contexts (C1) and (C2), and for English texts and patterns, FJS was uni-
formly superior to its competitors, with an up to 10% advantage over BMS and RC,
the closest adversaries. For very long patterns, it appears that FJS and BMS have
approximately the same behaviour, a not unexpected result since the Sunday skip
loop dominates.

In terms of (C3), for small alphabets the statistical incidence of p[m] = x[i’] will
be high, and so KMP will be invoked often, thus slowing FJS with respect to BMS
and RC. However, for k > 15 or so, FJS appears to again be the algorithm of choice,
again with a time advantage of 5~10%. We remark again that an alternate version of
FJS runs faster in practice than the one tested here [12], and in fact appears to be
dominant for k£ > 8.

The overall speed advantage of FJS probably relates to its efficient average-case
processing of the most common case (initial mismatch):

e use of a tight skip loop to find alignments with an initial match and avoid
repeated settings of j = 1;
e Markov independence of position m and position j in the pattern p.
As discussed in [22], the first of these factors, slight as it is, appears to be the more
important.

For FJS the pathological cases (C4) are those in which the KMP part is forced to
execute on prefixes of patterns where KMP provides no advantage (that is, the portion
of the pattern p that partially matches the text always has only an empty border).
On the other hand, FJS performs well on periodic patterns, precisely because of its
KMP component.

The advantage of FJS over TBM seems to be related to the extra time involved
in TBM’s shift logic; while the advantage over BMH seems to be a compound of an
improved shift methodology together with the effect of the KMP component.

In summary: we presented a hybrid exact pattern-matching algorithm, FJS, which
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Fic. 4.5. Ezecution Time versus Text Length for @ = a™, p = aba
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combines the benefits of KMP and BMS. It requires ©(m + k) time and space for pre-
processing, and finds all matches in at most 3n — 2m letter comparisons. We also
presented extensions of FJS that encourage its use in a wider variety of practical con-
texts: approximate pattern matching with “don’t-care” letters, and large alphabets.
Finally, we compared FJS with some of the fastest algorithms available. The results
suggest that FJS is competitive with these algorithms in general, and that for £ > 8
it is the algorithm of choice.

Appendix. An Implementation. What follows is a straightforward implemen-
tation of FJS in the C programming language. The null character used to terminate
strings in C provides the needed sentinel. This and related code can be downloaded
from [23], which also provides an interactive animation of the algorithm.

#include <stdio.h>
#include <string.h>

typedef unsigned char CTYPE; // type of alphabet letters

#define ALPHA (256) // alphabet size
#define MAX_PATLEN (100) // maximum pattern length

int betap[ MAX_PATLEN+1 ];
int Deltal ALPHA ];

void output( int pos ) {
static int matches = 0;
printf( "match %d found at position %d\n", ++matches, pos );

}

void makebetap( const CTYPE* p, int m ) {
int i = 0, j = betap[0] = -1;

while( i < m ) {
while( (j > -1) && (pl[il !'= p[jD) >
j = betapljl;
if ( p[++i] == p[++j] )
betap[i]l = betap[jl;
else
betap[i] = j;

}

void makeDelta( const CTYPEx p, int m ) {
int i;

for( i = 0; i < ALPHA; ++i )
Deltal[i] = m + 1;
for( i =0; i < m; ++i )
Deltal p[il 1 =m - i;
}

void FJS( const CTYPE* p, int m, const CTYPEx x, int n ) {
if( m < 1 ) return;
makebetap( p, m );
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makeDelta( p, m );

int i =0, j =0, mp =m-1, ip = mp;
while( ip < n ) {
if( j <=0) {
while( p[Lmp 1 !'=x[ip 1) {
ip += Deltal x[ ip+1 ] 1;
if( ip >= n ) return;

}
=0
i = 1ip - mp;
while( (j < mp) && (x[i]l == p[jl) )
{ ++i; ++j; }
if( j==mp) {
output( i-mp );
++i; ++j;
}
if( j <=0)
++i;
else
j = betapljl;
} else {
while( (j < m) && (x[i]l == p[j]) )
{ ++i; ++j; }
if( j ==m)
output( i-m );
j = betapl[jl;
}
ip =i + mp - j;
}
}

int main( int argc, char**x argv ) {
int m;

if( arge == 3 ) {
if( ( m = strlen( argv([2] )) <= MAX_PATLEN )
FJS( (CTYPEx) argv[2], m,
(CTYPE*) argv[1], strlen( argv[1] ) );

else
printf( "Recompile with MAX_PATLEN >= %d\n", m );
} else
printf( "Usage: %s text pattern\n", argv[0] );
return O;

REFERENCES

15

(1] R. A. BAEZA-YATES AND G. GONNET, A new approach to text searching, Commun. Assoc.

Comput. Mach., 35 (1992), pp. 74-82.

[2] R. S. BOYER AND J. S. MOORE, A fast string searching algorithm, Commun. Assoc. Comput.

Mach., 20 (1977), pp. 762-772.

[3] C. CHARRAS AND T. LECROQ, Ezact string matching algorithms. Laboratoire d’Informatique,

Université de Rouen, 1997. http://www-igm.univ-mlv.fr/~



16

[4]

[5]
[6]

[7]
(8]

F. FRANEK AND C. G. JENNINGS AND W. F. SMYTH

lecroq/string/index.html.

R. CoLE AND R. HARIHARAN, Tighter bounds on the exact complexity of string matching, in
33rd Symp. Found. Comp. Sci. Pittsburgh, Pennsylvania, 24-27 Oct. 1992, IEEE, pp. 600—
609.

R. CoOLE, R. HARIHARAN, M. S. PATERSON, AND U. ZWICK, Tighter lower bounds on the exact
complezity of string matching, SIAM J. Comput., 24 (1995), pp. 30-45.

L. Covrussi, Correctness and efficiency of the pattern matching algorithms, Information and
Computation, 95 (1991), pp. 225-251.

, Fastest pattern matching in strings, J. Algorithms, 16 (1994), pp. 163-189.

L. Corusst, Z. GALIL, AND R. GIANCARLO, On the exact complezity of string matching, in 31st
Symp. Found. Comp. Sci. vol. I, St. Louis, Missouri, 22-24 Oct. 1990, IEEE, pp. 135-144.

M. CROCHEMORE, A. CzuMAJ, L. GASIENIEC, S. JAROMINEK, T. LECROQ, W. PLANDOWSKI,
AND W. RYTTER, Speeding up two string-matching algorithms., Algorithmica, 12 (1994),
pp. 247-267.

M. CROCHEMORE, C. HANCART, AND T. LECROQ, Algorithmique du Texte, Vuibert, Paris, 2001.

B. DOMOLKI, A universal computer system based on production rules, BIT, 8 (1968), pp. 262—
275.

F. FranNek, C. G. JENNINGS, AND W. F. SMYTH, A simple fast hybrid pattern-matching
algorithm, in 16th Annual Symp. Combinatorial Pattern Matching, A. Apostolico,
M. Crochemore, and K. Park, eds., Springer-Verlag, 2005, pp. 288-297. LNCS 3537.

Z. GALIL, On improving the worst case running time of the boyer-moore string matching algo-
rithm, CACM, 22-9 (1979), pp. 505-508.

Z. GALIL AND R. GIANCARLO, On the exact complexity of string matching: Lower bounds,
SIAM J. Comput., 20 (1991), pp. 1008-1020.

, On the exact complexity of string matching: Upper bounds, STAM J. Comput., 21
(1992), pp. 407-437.

M. HART, Project Gutenberg. Project Gutenberg Literary Archive Foundation, 2004.
http://www.gutenberg.net.

J. HoLuB AND W. F. SmYTH, Algorithms on indeterminate strings, in 14th Australasian Work-
shop on Combinatorial Algorithms, 2003, pp. 36—45.

J. HoLuB, W. F. SMYTH, AND S. WANG, Fast pattern-matching on indeterminate strings, JDA,
(2006). To appear.

, Hybrid pattern-matching algorithms on indeterminate strings, in London Algorithmics
and Stringology 2006, J. Daykin, M. Mohamed, and K. Steinhofel, eds., Texts in Algorith-
mics, King’s College London, 2006. To appear.

R. N. HORSPOOL, Practical fast searching in strings, Software — Practice & Experience, 10
(1980), pp. 501-506.

A. HUME AND D. SUNDAY, Fast string searching, Software — Practice & Experience, 21 (1991),
pp. 1221-1248.

C. G. JENNINGS, A linear-time algorithm for fast exact pattern matching in strings, Master’s
thesis, McMaster University, 2002.

, Algorithm FJS, 2005. http://www.sfu.ca/"cjenning/fjs/index.html.

D. E. KnuTH, J. H. MORRIS, AND V. R. PRATT, Fast pattern matching in strings, SIAM J.
Comput., 6 (1977), pp. 323-350.

T. LECROQ, Ezperimental results on string matching algorithms, Software — Practice & Ex-
perience, 25 (1995), pp. 727-765.

, New experimental results on exact string-matching, Rapport LIFAR 2000.03, Université
de Rouen, 2000.

J. H. MORRIS AND V. R. PRATT, A linear pattern-matching algorithm, Tech. Rep. 40, University
of California, Berkeley, 1970.

G. NAVARRO AND M. RAFFINOT, A bit-parallel approach to suffiz automata: fast extended string
matching, in 9th Annual Symp. Combinatorial Pattern Matching, Springer-Verlag, 1998,
pp- 14-33. LNCS 1448.

B. SmyTH, Computing Patterns in Strings, Addison Wesley Pearson, 2003.

D. M. SUNDAY, A wvery fast substring search algorithm, Commun. Assoc. Comput. Mach., 33
(1990), pp. 132-142.

S. Wu aAND U. MANBER, Fast text searching allowing errors, Commun. Assoc. Comput. Mach.,
35 (1992), pp. 83-91.




